Step of Proof: symmetrized_preorder
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
symmetrized
preorder
:
T
:Type,
R
:(
T
T
). Preorder(
T
;
x
,
y
.
R
(
x
,
y
))
EquivRel(
T
;
a
,
b
.Symmetrize(
x
,
y
.
R
(
x
,
y
);
a
;
b
))
latex
by ((Unfolds ``preorder equiv_rel symmetrize`` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
R
:
T
T
C1:
3. Refl(
T
;
x
,
y
.
R
(
x
,
y
))
C1:
4. Trans(
T
;
x
,
y
.
R
(
x
,
y
))
C1:
Refl(
T
;
a
,
b
.
R
(
a
,
b
) &
R
(
b
,
a
))
C
2
:
C2:
1.
T
: Type
C2:
2.
R
:
T
T
C2:
3. Refl(
T
;
x
,
y
.
R
(
x
,
y
))
C2:
4. Trans(
T
;
x
,
y
.
R
(
x
,
y
))
C2:
Sym(
T
;
a
,
b
.
R
(
a
,
b
) &
R
(
b
,
a
))
C
3
:
C3:
1.
T
: Type
C3:
2.
R
:
T
T
C3:
3. Refl(
T
;
x
,
y
.
R
(
x
,
y
))
C3:
4. Trans(
T
;
x
,
y
.
R
(
x
,
y
))
C3:
Trans(
T
;
a
,
b
.
R
(
a
,
b
) &
R
(
b
,
a
))
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
t
T
,
P
&
Q
,
Symmetrize(
x
,
y
.
R
(
x
;
y
);
a
;
b
)
,
EquivRel(
T
;
x
,
y
.
E
(
x
;
y
))
,
x
(
s1
,
s2
)
,
Preorder(
T
;
x
,
y
.
R
(
x
;
y
))
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
trans
wf
,
refl
wf
origin